Regulators Approve Private Radioactive Waste Dump Critics, Texas State Law, and Court Challenge May Derail Plan

By Beyond Nuclear

On September 13 the Nuclear Regulatory Commission (NRC) granted a license for a controversial centralized storage site for high-level radioactive waste in west Texas, on the New Mexico border. If it’s ever opened, the site would concentrate up to 40,000 tons of the waste uranium fuel from nuclear power reactors across the United States in one place.

The firm Interim Storage Partners (ISP), a joint venture of Waste Control Specialists and Orano (formerly the French conglomerate Areva), intends to store the irradiated reactor fuel—euphemistically known as “spent” nuclear fuel or SNF, despite the fact that it is highly radioactive and lethal—in heavy dry storage canisters on surface concrete pads. If completed, it would be the first private high-level radioactive waste site in the United States. As Ari Natter reported for Bloomberg, “The waste can remain radioactive for hundreds of thousands of years.” [See: How Long Does Reactor Waste Stay Deadly? p.4]

A second centralized waste dump in New Mexico, 35 miles from the ISP site, and proposed by Holtec International, is also expected to be approved by the NRC. Holtec wants a license to store another 173,600 metric tons of waste fuel in partly buried canisters. Since the total volume of this waste fuel at US reactors is about 90,000 metric tons, experts have asked why the two sites would seek a combined capacity of 213,600 metric tons. One possibility is that waste from other countries could be imported by the for-profit dump projects. The government has previously done so, storing foreign waste at the Idaho National Laboratory in Idaho Falls, and, in 2018, testing the transport of a “mock SNF cask” shipped from Europe to Colorado.

Opening either of the Desert Southwest dumps would set in motion thousands of transport shipments of the high-level waste which would cross at least 44 states. The loaded canisters and transport casks are subject to radiation leakage and other failures that pose threats to thousands of communities along the transport routes.

“Transporting highly radioactive waste is inherently high-risk,” said Kevin Kamps, Radioactive Waste Specialist with Beyond Nuclear. “Fully loaded irradiated nuclear fuel containers would be among the very heaviest loads on the roads, rails, and waterways. They would test the structural integrity of degraded roads and bridges, risking derailments,” he said.

Kamps continued, “Even if the nation’s infrastructure is ever renovated, the shipping containers themselves will remain vulnerable to severe accidents and terrorist attacks, which could release catastrophic amounts of lethal radioactivity, possibly in a densely populated urban area. Even so-called ‘routine’ or ‘incident-free’ shipments are like mobile X-ray machines that can’t be turned off, in terms of the hazardous emissions of gamma and neutron radiation, dosing innocent passersby as well as transport workers.”

The Nuclear Waste Technical Review Board recommends spending a minimum of a decade to develop

What Caused My Cancer? Radioactive Fallout in Baby Teeth May Provide Clues

By Joseph Mangano

Carolyn Schulte remembers the events of early 1972. She was 12 and finishing the sixth grade in a St. Louis suburb. Her dad was a dentist, as were her grandfather and great-uncle. Her mom stayed home to manage the house and raise her and her brother John, then age 10.

John began to develop headaches that spring. At first, nobody was especially concerned. John was a healthy, friendly boy who liked a good laugh, enjoyed drawing and watching wrestling on TV, and loved chocolate milk, cheeseburgers, and French fries.

As the year progressed, the pleasures and outward normality of childhood were taken from John in a dizzying, downward spiral of symptoms, hospital stays, missed diagnoses, overwhelming health bills ... and finally death from brain cancer, just days after his eleventh birthday.

“Everyone was devastated,” Carolyn said. “But right away, we all thought, ‘What caused this?’ Nobody had the first idea of what brought the cancer on.”

For Carolyn and many others living in the St. Louis area whose family members had cancer in the 1970s and in subsequent decades, it wasn’t until recently that they learned of a possible cause of those deadly illnesses. An article published last March in the St. Louis Post-Dispatch reported on the revival of a famous study that measured radioactive fallout from above ground atom bomb tests and its absorption in humans.

Undertaken jointly in the 1950s and ’60s by the Committee for Nuclear Information (CNI) and Washington University in St. Louis, the study used donated baby teeth to gauge the presence of radioactive isotopes—specifically the cancer-causing isotope strontium 90, or Sr-90—in children.

The scientist on the team with the highest profile was Barry Commoner, a cellular biologist at Washington University and a member of the CNI board. Commoner was instrumental in developing the project and raising the funds to sustain it. He became familiar to national audiences in the 1970s via his prescient articles in The New Yorker on the fragility of the environment, and in 1980 he ran for president as the candidate of the Citizens Party.

Baby teeth are well regarded as research tools for their ease of collection and documentation. They fall out, people keep them, they are easy to collect from the general population, and they are easily dated. It’s relatively simple for researchers to establish the location of the birth mother during pregnancy and during the first year of the child’s life, two important data points. Baby teeth also make it easier for scientists working on controversial public health matters to conduct their research out in the open and to be less vulnerable to government censorship.

Carolyn inquired if John’s or her teeth were in the study. Sure enough, long before John was sick, his parents had donated one of his teeth to be included in the project.